
Category-Theoretic
Wanderings into
Interpretability

Unruly Abstractions
September 02, 2025

Ian Rios-Sialer

Independent

ORCID: 0009-0001-6970-6058

ian@unrulyabstractions.com

Introduction

It’s late already. However, it’s still summer, and I am not quite done yet. I type “Does he
still think about me?” but then I fancy something more actionable, so I settle on “Should
I text him?” instead and press enter. Sometimes ChatGPT says something different from
Claude, but they both seem annoyingly aligned on this matter. Can you guess their
answer? They both said ‘don’t’. I trust their instincts, this time. I even delete his number,
this time.

https://orcid.org/0009-0001-6970-6058
mailto:ian@unrulyabstractions.com


I promise I am normally more shy about sharing such intimacies¹ but chances are you
also use your Large Language Models (LLMs) somewhat alike². It’s even later in the
night, but now I crave to understand. Why did they tell me not to text him? What makes
my LLM sidekicks tell me the things they do? Interpretability steps in.

Interpretability can be defined as the ability to explain the inner workings of an AI model
to a human in understandable terms [7]. As a pre-paradigmatic field [8], [9], terminology
and definitions are a bit confusing and/or inconsistent [10], [11], [12]. A central desideratum
of interpretability is to contribute meaningfully to AI Alignment [13], AI Control [14], and
AI Safety [1], [15]. The hope [16] is that the more we understand AI systems, the more we
can ensure they work the way we want them to.³

In this piece, I spill some developing ideas of how category theory [19] frames inter-
pretability, and where our imagination can go with category-theoretic thinking. As the
title suggests, these “wanderings” have somewhat speculative epistemic status, and
they are not meant to present clear contributions (yet). Instead, I invite you to “think
together” with me in an always-in-process [20] collaboration.

This is a conceptual exploration: I define a few categorical objects and relate them to
interpretability. Instead of proofs and empirical validation to close arguments, I abuse
notation to provide conjectures, to open up alternative intuitions in you. And in
between formalisms, I sometimes drop in confessions, to open new empathies in you,
too. Understandability (and thus also interpretability) always has something contingent,
something relational, something personal.

Section 1 (Why Category Theory?) will explain why we are looking at the specific inter-
section of interpretability and category theory. Section 2 (What is a category?) provides a
gentle introduction to category-theoretic thinking. Section 3 (LLMs as categories?) starts
our exploration by looking at a [0,1]-enriched category (𝐿syn) that is defined for every
LLM. In Section 4 (Looking for meaning through syntax), we realize we will need to
compare things to interpret them, so we wonder if we could use (𝐿syn) to make insight-
ful comparisons between LLMs. In Section 5 (Framing Interpretability), we get more
serious and formulate what interpretability is. Section 6 (Decomposing Faithfulness)
breaks down faithfulness, the core technical problem in interpretability. Section
7 (Interpreting Circuit Tracing) applies the developed concepts to Circuit Tracing work
by Anthropic. Section 8 (Wayfinding) closes the piece with a reflection.

If you are in a hurry, you might want to go directly through Sections 5-7 for the technical
juice. I do hope you stay around for longer.

¹We often start conversations in the context of future Artificial Super Intelligence [1] and its risks.
Instead, I would like to first ground ourselves in what is familiar, felt [2] and present; hopefully inviting
many more different types [3] of people to the table [4], to engage [5] with the development of a technology
that will profoundly impact them sooner than they think.

²Personal support (emotional application), like therapy, was the top use case of Gen AI in 2025 [6]

³There is a lot more to say [17], [18] on how interpretability fits in the big picture, but I’ll follow up on
that in future writing
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1. Why Category Theory?

Category theory is an abstract formal language to study structures and their rela�
tions [21], [22]. It is a mathematical theory and a technical framework, but it can also be
seen as a “way of thinking about thinking” [23].

To think categorically⁴ is [23], [24], [25] to reason considering some of these steps:
• use intuition to find an interesting structure
• pry on the how/why of that structure
• define its context via relationships
• look for similar structure(s) in other contexts
• reason about in which sense they are similar and different
• form abstractions that unify the structures in precise ways
• consider the new abstractions as possible (part of) structures with relationships

themselves
• go back and think about what nuance or details (in the structures/situations) are not

captured by the available abstractions
• repeat the process, or form higher-level abstractions to attempt to capture the missing

nuance if desired

Interpretability can benefit from thinking more categorically

Why is thinking categorically useful? Because it can serve as a tool⁵ to think better
by allowing us to manipulate abstractions more freely yet still rigorously. By looking at
situations from multiple perspectives and scales, we gain new intuitions and insight.

As a young field, interpretability faces many challenges [9], [26], [27]. I believe category
theory could help address many of these challenges. To mention a select few ways:

• Unifying top�down and bottom�up approaches: The very abstract nature of
Category Theory allows us to “zoom in and out” [23] and reason how macroscopic
and microscopic structures relate to each other. In fact, we are already seeing
category-theoretic bridges forming to understand Deep Learning Architectures [28]⁶.
For interpretability, the goal would be to connect Mechanistic Interpretability [15]

and Representation Engineering [29]. You can think of this as roughly connecting
Neuroscience to Psychiatry/Psychology, linking how neurons work to how we
think, feel, and behave.

• Develop stronger foundations for decomposition methods: Compositional De-
composability is needed to reverse-engineer neural-networks [30]. Compositionality
requires modular [31] parts with a given interface [32] (with respect to a specific property
[33]) that has no emergent/generative effects [34]. Category Theory not only studies
the depths of compositionality when present [35], but even allows us to measure the
failures of compositionality [36]. Imagine it as learning to cook. Sometimes, the

⁴or “category-theoretically”
⁵A thinking technology?
⁶More specifically, unifying the specification of constraints (often in relation to data) and the specifi-

cation implementations (like the individual tensor operations)“ [28]
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order of ingredients does not matter, and some properties of the resulting
dish can be directly inferred from looking at the ingredients (like tossing
together a salad, counting calories). Other times, it matters how you combine
things (like baking a cake or fermenting bread), where the process changes
the outcome entirely.

• Inspire the development of new theories: Although interpretability has allowed
us to gain insight into interesting mechanisms [37], the results are limited to specific
prompts [38]. Some of our models for interpretability (like Superposition or Linear
Representation Hypothesis) and methods (like Sparse Auto Encoders) are falling short
in providing us generalizable and applicable interpretations [9], [39], [40], [41]: We need
theoretical and conceptual breakthroughs [17], [42]. Thinking categorically helps us
reason about complex systems by focusing on the observable relationships between
components, without needing full access to their opaque internal workings [25]. More-
over, Category Theory invites us to use formal diagrams, which externalize structure
and relevant reasoning [43]. By having more visual (and relational) representations, we
could shed light on what has been so far “unthinkable” [44] and form the intuitions
needed to progress interpretability [45]. You can think of this as when Copernicus,
looking at the same sky, was inspired to consider other possibilities other than
the Earth being at the center of the universe.

2. What is a category?

There are many good introductory books for Category Theory⁷ [19], [23], [24], [46] and some
more intermediate ones [34], [47] which I strongly invite you to check out. Instead of going
through a list of formal definitions, I will walk you through an unserious but hopefully
intuitive example. If you already have the background, feel free to skip this section.

My friends have noticed I sometimes binge on very cringey TV shows. Let’s think about
this categorically. We start by defining a finite set of all TV shows (available for me to
stream from my couch), and a function from each element of such a set to a positive real
number that expresses how cringe a show is (based on my friends’ opinions):

TVShows ≔ {White Lotus, Hacks, ….} Cringe : TVShows → ℝ+ (2.1)

With that⁸, the 𝖢𝗋𝗂𝗇𝗀𝖾𝖲𝗁𝗈𝗐𝗌 category consists of the following Data:
1. A collection ob(𝖢𝗋𝗂𝗇𝗀𝖾𝖲𝗁𝗈𝗐𝗌) of objects, the elements of the set TVShows
2. For every 𝑥, 𝑦 ∈ ob(𝖢𝗋𝗂𝗇𝗀𝖾𝖲𝗁𝗈𝗐𝗌), a set of morphisms⁹ [𝑥, 𝑦]CringeShows¹⁰ , in our case,

such set will have single element when Cringe(𝑥) ≤ Cringe(𝑦) and be the empty set
∅ otherwise.

⁷I highly recommend The Joy of Abstraction by Eugenia Cheng [23]

⁸You might have noticed we have formed a partially-ordered set (poset) (Cringe(TVShows), ≤)
⁹Also called arrows or maps
¹⁰[𝑥, 𝑦]𝐶  could also be written as 𝖧𝗈𝗆𝘊(𝘹, 𝘺), 𝐶(𝑥, 𝑦) or just [𝑥, 𝑦]
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With the following Structure:
1. An identity morphism for every object, 𝑥 →

id𝑥 𝑥 which is 𝑥 ≤ 𝑥
2. A composition operation such that any two morphisms like 𝑥 →

𝑓
𝑦 and 𝑦 →

𝑔
𝑧 produce

𝑥 →
𝑔∘𝑓

𝑧, which means 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 imply 𝑥 ≤ 𝑧

With the following Properties:
1. Unit Law, such that given 𝑥 →

𝑓
𝑦, 𝑓 = id𝑦 ∘ 𝑓 = 𝑓 ∘ id𝑥

2. Associativity Law, such that ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓

Let’s create a diagram for some of the TV shows:

Cringe(Love is Blind) ≤ Cringe(Glee) ≤ Cringe(Emily in Paris) (2.2)

Love is Blind Glee Emily in Paris

I have drawn identity arrows and compositions, but those are usually not drawn as they
can be inferred. Our category is called “thin” because we have at most one arrow between
any two objects. Other categories could have many more.

Let’s backtrack from the mathematical notation for a second and think about what we
have done: We are noticing a structure of interest and characterizing objects by how they
fit in this structure. My friends will never watch Love is Blind so they are not interested
in the intricacies of that reality show. They only pay attention to how cringey a show is
in comparison to other shows. Why? My friends know I watch the cringiest shows when
my mood is down and I need comfort. They would know something is very wrong if I
ever get hooked on Emily in Paris.

My friends cannot observe my internal mood directly, but they sometimes hear about
the situations in my life. Certain situation(ship)s affect my mood significantly. Let’s now
consider the 𝖬𝗈𝗈𝖽 category and the 𝖲𝗂𝗍𝗎𝖺𝗍𝗂𝗈𝗇𝗌𝗁𝗂𝗉 category.

F G
Situationship Mood CringeShows
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We are going up a level of abstraction¹¹ and treating categories like objects themselves.
𝐹 and 𝐺 are called functors, “morphisms between categories”¹². We can also compose
these functors 𝐻 = 𝐺 ∘ 𝐹. My friends do not know exactly what 𝐻 is, but they can
approximate it as 𝐻approx. We can go up a level of abstraction again and now ask, what
is the relationship between these functors? The morphisms between functors are called
natural transformations¹³:

H

𝐻approx

𝛼Situationship CringeShows

We can start reasoning about how good the approximations are, whether they bring
understanding. Maybe watching Emily in Paris wouldn’t be so bad after all. We can also
think about 𝖬𝗈𝗈𝖽 more. In reality, there are many more arrows¹⁴ coming in and out
of 𝖬𝗈𝗈𝖽. We can observe them, perform interventions [50], see what happens after, etc.
This is where the Yoneda Perspective comes in: “mathematical objects are completely
determined by their relationships to other objects.” [25]

We can also take even a bigger step back and reassess our abstractions. Maybe we
should use more advanced category-theoretic objects to represent the relationships we
see. Maybe we should also question the certainty of our observations and take that into
account too.

Reality → Abstractions (2.3)

It’s also easy to get lost in abstractions. It’s important to maintain a purpose, and know
when to look more closely into the real world¹⁵. And eventually, take action¹⁶.

The following sections will be more technical in nature¹⁷. I will build up from specific
papers. I will strive to provide the high-level picture, but if you are interested in the
details, I strongly encourage you to read the particular papers I will build upon.

¹¹Abstracting is a careful and controlled forgetting of the details to unify situations efficiently. [23]

¹²Traditional (strict) functors need to satisfy a condition called functoriality. We also have general-
ization of functors (like lax functors) that relax that condition

¹³Natural transformations need to satisfy a condition called naturality. In our case, this amounts to
preserving the relative ordering

¹⁴I can arguably also communicate my feelings. To some faithful [48] extent, anyway [49].
¹⁵“The great human error is to reason in place of finding out”, Simone Weil
¹⁶Yes, this means stop texting him.
¹⁷I also suggest reading the appendix right now if you want more build-up before diving in
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3. LLMs as categories?

There are many¹⁸ possible starting points for us to start wandering from category theory
into interpretability. I am particularly inspired by Bradley et al [59], [60], and I really
recommend you to read her work (or watch her talks on YouTube). We will start by
rephrasing some of her work in this section to get us started.

When we talk about LLMs in this piece, we refer to auto�regressive LLMs, which
generate probabilities of a sequence of tokens [61]:

𝑝(𝑡1, …, 𝑡𝑛) = 𝑝(𝑡1) ∏
𝑛−1

𝑖=1
𝑝(𝑡𝑖+1 | 𝑡1, …, 𝑡𝑖) (3.1)

where each token belongs to a core finite alphabet 𝑡 ∈ 𝐴𝑡core .

We also consider two special tokens to indicate the start-of-sequence and end-of-se-
quence: 𝑡sos and 𝑡eos. The extended alphabet is 𝐴𝑡ext = 𝐴𝑡core ∪ {𝑡sos, 𝑡eos}. We also consider
that LLMs have a fixed context window 𝑁 cutoff ∈ ℕ

Sequences of tokens are strings. All possible finite strings are formed from the free
monoid over the token alphabet, 𝐴s = 𝐴∗

𝑡core. We want terminating texts, so we define the
set of sequences of valid strings Seq𝑠 as the strings that start with 𝑡sos, and
• end with 𝑡eos and have less than 𝑁 cutoff − 1 core tokens (finished texts)
• do not end with 𝑡eos and have less or equal 𝑁 cutoff − 1 core tokens (unfinished texts)

Seq𝑠 = {𝑡sos𝑠 : 𝑠 ∈ 𝐴s ∧ |𝑠| ≤ 𝑁 cutoff − 1} ∪ {𝑡sos𝑠𝑡eos : 𝑠 ∈ 𝐴s ∧ |𝑠| < 𝑁 cutoff − 1} (3.2)

|𝑠| counts core tokens; the full sequence length always includes 𝑡sos, but only 𝑡eos if
finished.

Let’s think about prompts and continuations as:

𝑥 = 𝑠prompt = 𝑡sos𝑡1…𝑡𝑝 (3.3)

𝑦 = 𝑠cont = 𝑥𝑡𝑝+1…𝑡𝑝+𝑘  where  𝑡𝑝+𝑘 = 𝑡eos  or  |𝑠| = |𝑡1…𝑡𝑝+𝑘| ≤ 𝑁 cutoff − 1 (3.4)

We can also define a prefix relation like

𝑥 ≤ 𝑦 ⇔ ∃𝑠 | 𝑦 = 𝑥𝑠 (3.5)

For every prompt, we have the set of all terminating texts 𝑇(𝑥). We can chain the token-
level probabilities to give full-text probabilities:

𝑝(𝑦|𝑥) = 𝑝(𝑡𝑝+1|𝑥) ∏
𝑘−1

𝑖=1
𝑝(𝑡𝑝+𝑖+1 | 𝑥𝑡𝑝+1…𝑡𝑝+𝑖) = ∏

𝑘

𝑖=1
𝑝(𝑡𝑝+𝑖 | 𝑦<𝑝+𝑖) (3.6)

¹⁸Really many [22], [28], [51], [52], [53], [54], [55], [56], [57], [58]
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How do we categorize this? Let’s set aside the probabilities for a moment and focus on
what they act on: words. How do we form sentences, texts,… from words? The base
language category will provide us with the initial support to structure words.

The Base Language Category 𝐿base is a prefix poset (𝑥 ≤ 𝑦 iff 𝑥 is a prefix of 𝑦) which
has
• Objects: 𝑠𝑖 ∈ Seq𝑠 as in Equation (3.2)
• Morphisms: [𝑠𝑖, 𝑠𝑗] is singleton set if prefix relation as in Equation  (3.5), empty

otherwise.

This category is a thin category similar to the one we had in Section 2 (What is a
category?)! Let’s visualize it. For simplicity, let’s assume our words match our tokens and
we have 𝐴small = {stop, texting} and 𝑁 cutoff = 4. So our category would look like:
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𝑡sos

𝑡sos texting

𝑡sos stop

𝑡sos𝑡eos

𝑡sos texting 𝑡eos

𝑡sos texting texting

𝑡sos texting stop

𝑡sos stop stop

𝑡sos stop texting

𝑡sos stop 𝑡eos

𝑡sos texting texting 𝑡eos

𝑡sos texting texting texting

𝑡sos texting texting stop

𝑡sos texting stop 𝑡eos

𝑡sos texting stop texting

𝑡sos texting stop stop

𝑡sos stop stop texting

𝑡sos stop stop stop

𝑡sos stop stop 𝑡eos

𝑡sos stop texting texting

𝑡sos stop texting stop

𝑡sos stop texting 𝑡eos

Figure 1: Example of 𝐿base for a small alphabet. Terminating states are labeled by box

In Figure 1, all the objects with no outgoing arrows constitute the set of terminating
states 𝑇(𝑥).

Does this represent an LLM? Not yet! The 𝐿base category captures the compositional
structure of language, all the syntactic ways a prompt can be extended. However, we
are missing the distributional structure. For that, let’s construct a category enriched
over the unit interval. [59] will give you technical details of this enrichment and [0, 1]-
categories, so that we will focus here on the result.
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Every LLM defines a 𝐿syn Category

The Language Syntax Category 𝐿syn is a [0, 1]-category which has
• Objects: Same objects as 𝐿base
• Hom-objects: The hom-set [𝑥, 𝑦]𝐿base

 is enriched such that 𝐿syn(𝑥, 𝑦) ≔ 𝜋(𝑦|𝑥) is the
probability that 𝑦 extends 𝑥 defined as:

𝜋(𝑦 | 𝑥) ≔

{
{

{1                                 when 𝑥 = 𝑦
0                                 when 𝑥 → 𝑦
∏𝑘

𝑖=1 𝑝(𝑡𝑝+𝑖 | 𝑦<𝑝+𝑖)        when 𝑥 → 𝑦
(3.7)

Note that 𝜋(−|𝑥) becomes the probability mass function only when restricted to 𝑇(𝑥).
The composition becomes

𝜋(𝑦|𝑥)𝜋(𝑧|𝑦) ≤ 𝜋(𝑧|𝑥) (3.8)

Equality holds when 𝑦 is exactly the chosen intermediate prefix on the unique path 𝑥 ≤
𝑧; the ≤ is the enriched triangle inequality.

Let’s consider our previous example with a small alphabet, but now over the enriched
version of the category. Let’s say our prompt is 𝑥 = 𝑡sos stop. The possible terminating
continuations 𝑦 will have the following probabilities:
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0.005

0.005

0.03

0.03

0.06

0.85

0.02

0.85 = 17

20

0.944… = 17

18
0.9 = 9

10

𝑡sos stop

𝑡sos stop stop texting

𝑡sos stop stop stop

𝑡sos stop stop 𝑡eos

𝑡sos stop texting texting

𝑡sos stop texting stop

𝑡sos stop texting 𝑡eos

𝑡sos stop 𝑡eos

𝑡sos stop 𝑡sos stop texting 𝑡sos stop texting 𝑡eos

Figure 2: Top: Showing total probabilities in 𝐿syn for given prompt.
Bottom: Showing compositionality of 𝜋(𝑦 | 𝑥)

And voilà! That’s how we can construct categories that encode the behavior of LLMs.

Every LLM will correspond to a single 𝐿syn category. All possible 𝐿syncategories will
live inside an ambient category we will name 𝔏syn. Real relations between concrete
LLMs now correspond to transformations in 𝔏syn. For instance, we have transformations
between 𝐿syn categories that represent processes that update model weights [62], includ-
ing Pretraining(PT), Supervised Fine-Tuning(SFT), and Reinforcement Learning from
Human Feedback (RLHF):

PT SFT RLHF
𝐿untrained

syn 𝐿pretrained
syn 𝐿fine-tuned

syn 𝐿aligned
syn

4. Looking for meaning through syntax

As we will see later, to reason about interpretations, it helps to have ways to make
comparisons, sometimes between two LLMs. Since every LLM defines a specific
𝐿syn category, a sensible next step for us is to explore how each 𝐿syn category relates to
the others. To pry on possible structure, let’s go back to my situation(ship)s for a second.

¹⁹The curse of being both polyamorous and a love addict, I fear
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As it turns out, there are multiple people¹⁹ I ask my LLM about. Interestingly enough,
my chatbot sometimes says the same thing about certain people. Some men whose
names start with the letter “M” I should definitely not text. Let’s disregard the long and
emotional writing I often input as part of my context window, and let’s imagine my LLM
actually has all of that as internal knowledge. Let’s examine what the LLM tells me when
I ask “Should I text Mahdi?” vs “Should I text Mark?” ?

0.60

0.25

0.14

0.01

0.60

0.25

0.14

0.01

𝑡sosShould I text
Mark?

𝑡sosShould I text
Mahdi?

𝑡sos Should I text Mark? No! Please, block his number 𝑡eos

𝑡sos Should I text Mark? Noooooooooooooaur Ahhhhhhhh 𝑡eos

𝑡sos Should I text Mark? u are gonna do what u want anyway 𝑡eos

…

𝑡sos Should I text Mahdi? No! Please, block his number 𝑡eos

𝑡sos Should I text Mahdi? Noooooooooooooaur Ahhhhhhhh 𝑡eos

𝑡sos Should I text Mahdi? u are gonna do what u want anyway 𝑡eos

…

Figure 3: Two prompts having the same distribution of continuations

What is happening? We have two prompts 𝑥𝑝 ≔ 𝑡sosShould I text Mark? and 𝑥𝑞 ≔
𝑡sosShould I text Mahdi? that produce the same distribution of continuation suffixes. As
I mentioned before, when we think categorically, we often encode everything knowable
about an object in terms of how other objects relate to it. We could say that both prompts
are observationally equivalent. We can use the [0, 1]-enriched Yoneda Embedding from
Bradley et al [60] to investigate what that equivalence looks like more explicitly. We have
a functor from 𝐿syn to another category, 𝐿sem.

𝖸𝗈𝗇𝖾𝖽𝖺
𝐿syn 𝐿sem
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The Language Semantic Category 𝐿sem has
• Objects: For every object 𝑥 in 𝐿syn, we have an enriched functor ℎ𝑥 ≔ 𝐿syn(𝑥, −) as an

object in 𝐿sem such that

ℎ𝑥(𝑦) ≔ {𝜋(𝑦 | 𝑥)       if 𝑥 → 𝑦 in 𝐿syn
0               otherwise

(4.1)

ℎ𝑥 is the enriched Yoneda Embedding, also an enriched copresheaf.
• Hom-objects: For every ℎ𝑥, ℎ𝑦 ∈ Obj(𝐿sem), we have 𝐿sem(ℎ𝑥, ℎ𝑦) ≔

inf𝑧∈𝐿syn[ℎ𝑥(𝑧), ℎ𝑦(𝑧)], where [a,b] is the internal hom defined as:

[𝑎, 𝑏] ≔ {
𝑏

𝑎
           if 𝑏 < 𝑎

1             otherwise
(4.2)

The direction of the arrows is reversed between 𝐿syn and 𝐿sem. If we have 𝑥 → 𝑦 in 𝐿syn,
we will have ℎ𝑥 ← ℎ𝑦 in 𝐿sem. The more specific a text becomes, the fewer contexts
it can meaningfully continue into. Text grows by accumulation while meaning
emerges through constraint. We could start to philosophize a bit and say that meaning
is the instructions of concept assembly [63] through this contextual constraint.

I recommend you check out Bradley et al [59], [60] for the technical details²⁰. We have
quickly introduced a lot, so let’s see what this looks like in my example:

0.60

0.25

0.14

0.01

𝑥𝑝

𝑥𝑝𝑦1

𝑥𝑝𝑦2

𝑥𝑝𝑦3

…

ℎ𝑥𝑝(𝑧) =

{
{

{0.60     if 𝑧=𝑥𝑝𝑦1    
0.25     if 𝑧=𝑥𝑝𝑦2    
0.14     if 𝑧=𝑥𝑝𝑦3    
..

ℎ𝑥𝑝𝑦1

ℎ𝑥𝑝𝑦2

ℎ𝑥𝑝𝑦3

…

Figure 4: Applying the Yoneda Embedding to “Should I text Mark?” prompt
from Figure 3

²⁰To define the base language category, [60] considers substrings while [59] considers prefixes (which
directly connect to LLMs; what we use in this piece). Just keep that in mind as you read through those
papers.
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What we see is that the semantic content of 𝑥𝑝 (“Should I text Mark?”) is encoded by the
distribution of its continuations. This coincides with TY Liu et al [64]: if two prompts
have the same “syntactic meaning representation”, they will be “indistinguishable based
on their continuations for the model”. We can define the “Continuation Similarity” as²¹:

𝑥 ∼ 𝑦 ⟺ ∀𝑧 ∈ 𝐴s : ℎ𝑥(𝑥𝑧) = ℎ𝑦(𝑦𝑧) (4.3)

In real life, we will not find exact equivalences. Let’s provide an approximate version.
The “Approximate Continuation Similarity” would be

𝑥 ∼
𝜀

𝑦 ⟺ ∀𝑧 ∈ 𝐴s : 𝑑(ℎ𝑥(𝑥𝑧), ℎ𝑦(𝑦𝑧)) < 𝜀 (4.4)

where 𝑑(𝑎, 𝑏) is a probability metric like Jensen-Shannon Distance or Total Variation
Distance.

Then, we can define “Approximate Continuation Equivalence” if there is a chain of
similarities like:

𝑥 ≡
𝜀

𝑦 ⟺ ∃𝑛 ≥ 0, ∃𝑣0, …𝑣𝑛 : 𝑥 = 𝑣0 ∼
𝜀

𝑣1 ∼
𝜀

… ∼
𝜀

𝑣𝑛 = 𝑦 (4.5)

which in turn defines the equivalence class:

[𝑥] = {𝑦 ∈ Obj(𝐿syn) : 𝑥 ≡
𝜀

𝑦} (4.6)

We could have made different choices to construct this equivalence class. For instance,
instead of a probability metric, we could have leveraged our enriched setting to define
𝑆(𝑥, 𝑦) = inf𝑧∈𝐴𝑠[ℎ𝑥(𝑧), ℎ𝑦(𝑧)] ∈ [0, 1] and 𝑑𝑠(𝑥, 𝑦) = − log(𝑆(𝑥, 𝑦)). We could also have
introduced a chain-metric 𝑑chain = inf(𝑥=𝑣0,…,𝑣𝑛=𝑦) ∑𝑖 𝑑𝑠(𝑣𝑖, 𝑣𝑖+1). Each of these choices
has pros and cons. Right now, I am more interested in what we could do with such an
equivalence class: Let’s define a new category.

Interpreting topology from meaning

The 𝜀�Continuation Quotient Category is 𝑄𝜀 ≔ 𝐿syn/ ≡
𝜀

 . It is a [0,1]-category with:
• Objects: Equivalence classes [x]
• Hom-objects: For direct edges, we choose the supremum over representatives:

𝑄𝜀([𝑥], [𝑦]) = sup
(𝑥′∈[𝑥],𝑦′∈[𝑦])

𝐿syn(𝑥′, 𝑦′) (4.7)

• For compositionality to work, we need to be careful about choosing intermediaries
that align. So for the one-intermediary case (via any 𝑦′ ∈ [𝑦]), this would be:

𝑄𝜀([𝑥], [𝑧]) = sup
(𝑥′∈[𝑥],𝑦′∈[𝑦],𝑧′∈[𝑧])

𝐿syn(𝑦′, 𝑧′)𝐿syn(𝑥′, 𝑦′) (4.8)

²¹There are some details to iron out to make this precise. First, whether we only require terminal texts
to have the same distribution or all intermediate continuations (and whether that is different). Secondly,
what happens when one of the prompts puts us considerably closer to 𝑁 cutoff.
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When we think about longer chains, the formula looks a bit overwhelming, but the idea
is that we keep consistent intermediaries as we multiply over all possible paths:

𝑄𝜀([𝑥], [𝑧]) = sup
𝑘≥0

sup
(𝑥′∈[𝑥],𝑧′∈[𝑧])

sup
(𝑦′

1,…,𝑦′
𝑘−1)

∏
𝑘−1

𝑖=0
𝐿syn(𝑦′

𝑖, 𝑦′
𝑖+1) (4.9)

with 𝑦′
0 = 𝑥′ and 𝑦′

𝑘 = 𝑧′ such that 𝑄𝜀([𝑥], [𝑥]) = 1 and ∀[𝑥], [𝑦], [𝑧] :
𝑄𝜀([𝑦], [𝑧])𝑄𝜀([𝑥], [𝑦]) ≤ 𝑄𝜀([𝑥], [𝑧])

We can think that there is an ε-Continuation Collapse Functor ℚ𝜀 : 𝐿syn → 𝑄𝜀. ℚ𝜀
collapses prompts whose continuation distributions are 𝜀-close, then uses the largest
available transition probability between any representatives as the class-to-class hom.
This lets us study the ‘shape’ of meaning neighborhoods and compare them across
models.

In practice, we can examine a specific prompt, smartly sample continuations to get a
wide picture of the distributions, and apply ℚ𝜀. Remember that terminal states form a
total probability, and that every 𝐿syn(𝑥, 𝑦) is the upper bound on any terminal continu-
ation beneath it.

Why do we want to do any of this? LLMs that have the same token alphabet and
context window, even if they have different architectures²², will share the same 𝐿base. If
we wanted to compare two 𝐿syn categories, we are stuck with two of the same diagrams
but with different 𝜋(𝑦|𝑥) hom-objects, each produced by a different causal structure.
Constructions like ℚ𝜀 allow us to translate the structure in one domain (information-
theoretic enrichment in 𝐿syn) into another domain (topology, geometry of 𝑄𝜀), where we
can apply different types of mathematics to investigate what’s below the surface.

I am frustrated that both ChatGPT and Claude tell me not to text him. What if I could
fold what I read from them into a shape:

²²As long as they are auto-regressive.
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ChatGPT

Claude

ℚ𝜀

Figure 5: Imagining different induced topology for the same prompt

I start to wonder, what does it mean for the shapes of the quotient to be similar
or different?²³. Even if they were identical, there is a possibility that different inner
mechanisms produce the same observable behavior. To gather evidence to expand our
observational faithfulness, we can make edits and see if the new 𝑄𝜀 shapes still match up.
We can perform perturbations to test for robustness (i.e, the real structure persists and
remains stable) and interventions to test causality (i.e, the organization of causal effects
is preserved). We will delve into that in the following sections²⁴.

Before moving on, let’s highlight what we did: We inspected objects (of an LLM cate-
gory) by looking at their relationships (𝐿syn to 𝐿sem). We used our intuition (two prompts
have the same meaning if their continuations are the same) and chose a well-motivated
structure (≡

𝜀
) to examine our objects from another viewpoint (ℚ𝜀). From that angle,

we asked ourselves what things we could reason about, based on our original objects
(observational identification by topology?). Why did we do this? To find interesting
ways to compare objects in our quest for interpretability. What’s the big picture? More
than championing this specific technical construction, I wanted to show how we can
think categorically about LLMs and build bridges across perspectives.

So, why do we make comparisons when we interpret?
…what is to interpret, anyway?

²³In real life, we also need to consider the metric 𝑑 and threshold 𝜀 sensitivity, iterate through design
choices for our quotient category, and ultimately gauge how much shape of the shape difference can be
attributed to noise and pipeline choice

²⁴In Section 6 (Observational Faithfulness), we’ll briefly return to these constructions, if you are
curious about where they reappear

16



5. Framing Interpretability

To interpret is to form an understandable explanation. An explanation is under#
standable when it conveys context-specific meaning that fits our mental model, so we
can anticipate the system’s behavior and choose appropriate actions. [10].

As such, understandability is situational and oriented²⁵. Any explanation 𝔼 has multiple
associated understandabilities [12] 𝖴𝗇𝖽, depending on who the subject is in what context:

Δ context 

… ≤ 𝖴𝗇𝖽𝑥(𝔼𝑖) ≤ 𝖴𝗇𝖽𝑥(𝔼𝑗) ≤ …

… ≤ 𝖴𝗇𝖽𝑦(𝔼𝑗) ≤ 𝖴𝗇𝖽𝑦(𝔼𝑖) ≤ …

For instance, a weather forecast that uses Fahrenheit instead of Celsius would be less
understandable to me than it would be for someone who grew up in the US.

The process of interpretation [12] is to map a less understandable explanation to a more
understandable one:

Interpret𝑥 = 𝕀𝑥 : 𝔼𝑖 → 𝔼𝑗 ⇔ 𝖴𝗇𝖽𝑥(𝔼𝑖) ≤ 𝖴𝗇𝖽𝑥(𝔼𝑗) (5.1)

What's an explanation?

An explanation is a representation of a mechanism that connects particular evaluations
of it to observations :

𝕏 𝕄

𝕐

ℤ = 𝕄 ∘ 𝕏

Δ
Σ

ℐ

𝒳

𝒵

𝒴

Figure 6: 

We can read the explanation diagram as:
• 𝕏 selects an evaluation from 𝒳
• 𝕐 selects an observation from 𝒴
• 𝕄 mechanism produces a prediction in 𝒵 based on the selected evaluation.
• The observation maps to the prediction by

analysis Δ, and vice versa by synthesis Σ.

²⁵When we also consider to whom what understandings are more reachable, understandability is also
political [4]
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Formally²⁶, working in 2-category Cat, we define:
• An input category 𝒳
• Two output categories: an observation category 𝒴 and a prediction category 𝒵
• An indexing category ℐ
• A mechanism 𝕄 : 𝒳 → 𝒵
• An evaluation 𝕏 : ℐ → 𝒳
• An observation 𝕐 : ℐ → 𝒴
• Such that, an explanation is the triplet²⁷ 𝔼 = (𝕄, 𝕏, 𝕐)

that is stitched by:
‣ A prediction: ℤ = 𝕄 ∘ 𝕏
‣ An analysis functor: Δ : 𝒴 → 𝒵
‣ A synthesis functor: Σ : 𝒵 → 𝒴

Note: For convenience, we will abuse notation and write 𝔼 = (𝕄, 𝒳, 𝒴) to make the
underlying input/output categories explicit.

The degree to which observations match predictions (and vice versa) is the degree of
uncertainty and incompleteness [7] of the explanation. Going back and forth from obser-
vation to prediction (through Δ and Σ) introduces error. To capture that error, which is
internal to an explanation, we could define:
• A precision witness unit: 𝜔𝘱 : id𝕐 ⇒ Σ ∘ Δ
• A resolution witness counit: 𝜔𝘳 : Δ ∘ Σ ⇒ idℤ

Σ ∘ Δ

id𝒴

𝜔𝑝

id𝒵

Δ ∘ Σ

𝜔𝑟𝒴 𝒴 𝒵 𝒵

If 𝜔𝘱, 𝜔𝘳 do exist, there is an equivalence 𝒴 ≃ 𝒵

We often want to consider explanations that can match perfectly each predic�
tion to its own observation. That is the Infinite Fidelity Assumption: We assume there
is no noise and perfect resolution within an explanation, which leads to an isomorphism
between predictions and observations:

id𝒴 = Σ ∘ Δ, Δ ∘ Σ = id𝒵 → 𝒴 ≅ 𝒵 (5.2)

We can also consider a stricter Ideal Prediction Assumption as:

𝕏

𝕄

𝕐

ℐ

𝒳

𝒴

𝒵 ≡ 𝒴 (5.3)

²⁶We could make this definition more general by using profunctors [47]

²⁷In literature [12], you’ll rather see Mechanism called Explanan, Observation as Explanandum, and
Evaluation as Process of Explanation.
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Scope is the extent of validity of an explanation. We can think of 𝒳 as defining the
entire possible domain and ℐ as selecting a concrete subdomain of interest. The concrete
subdomain is what ultimately determines our explanatory scope.

To understand this, imagine we have 𝒳 = 𝒴 = ℝ. We could have the different choices
for the indexing category ℐ, defining two different explanations :
• 𝔼𝐺 will have ℐ = ℝ. In this case, the scope of our explanation covers all possible inputs.
• 𝔼𝐿 will have ℐ = {1}. In this case, the scope of our explanation encompasses a single

number from a much larger possible domain ℝ.

But what if instead we re-defined 𝒳 = {𝑥0} in 𝔼𝐿? Nothing in our explanation itself
would change. For an explanation 𝔼𝐿, considering a possible domain bigger than its
concrete one is meaningless unless we compare it to another explanation 𝔼𝐺, which has
a concrete domain that covers all of 𝔼𝐿’s possible domain.²⁸

An indexing category defines a “shape”. Functors of the form 𝔽 : ℐ → 𝒞 are “selecting”
a diagram in 𝒞 with ℐ shape. We have shapes in all levels of abstraction,

An explanation is a triplet of functors, so its shape will start with arrows from three
categories 𝘊𝘢, 𝘊𝘣, 𝘊𝘤, to another three categories 𝘊𝟣, 𝘊𝟤, 𝘊𝟥. But the definition of explana-
tion requires the shape to respect further structure. For instance, we know that two of
the categories must be the same as a particular indexing category: 𝘊𝘣 = 𝘊𝘤 = ℐ.

The shape category 𝒮 will be the category that fully encapsulates the shape of an
explanation. This shape can be used to “pick” a particular explanation from all possible
explanations, just like the index category allows us to pick a particular value from all
possible values in the input category. This “selection” of an explanation is an object of
the functor category [𝒮, 𝖢𝖺𝗍] where 𝖢𝖺𝗍 is the category of all categories. Each explanation
will have a “selection”. We notice that explanations all connect at an index category, so
our selections are more specifically objects of [𝒮, [ℐ, 𝖢𝖺𝗍]]. In Equation (5.3) case, this
would be:

−

−

−

−

−

−

𝕏

𝕄

𝕐

·

·

·

⇒ ℐ

·

·

⇒ ℐ

𝒳

𝒴

The diagram selection operator is then:

diag : Expl → [𝒮, [ℐ, 𝖢𝖺𝗍]] (5.4)

The diagram of an explanation 𝔼𝑘 is:

𝔻𝑘 ≔ diag(𝔼𝑘) (5.5)

²⁸We will continue this discussion on Section 6 (Locality)

19



To help us with technicalities, we define a conjugation. Given 𝐹, 𝐺 : 𝐶 → 𝐷, 𝑅 : 𝑉 → 𝐶,
𝐿 : 𝐷 → 𝑊  functors, and 𝛼 : 𝐹 → 𝐺 natural transformation, we have the natural trans-
formation:

(𝐿 ∘ _ ∘ 𝑅)[𝛼] : 𝐿 ∘ 𝐹 ∘ 𝑅 → 𝐿 ∘ 𝐺 ∘ 𝑅 (5.6)

What's an interpretation?

𝕄𝑡 𝕄𝑝

𝕐𝑝
𝘐𝕐 ∘ 𝕐𝑡

𝕐𝑡

𝕏𝑝

𝘐𝕏 ∘ 𝕏𝑡

𝕏𝑡

𝘐𝕐

𝘐ℤ

𝘐𝕏

𝘐ℤ ∘ 𝕄𝑡

𝕄𝑝 ∘ 𝘐𝕏

Δ𝑡

Σ𝑡 Δ𝑝

Σ𝑝

ℐ

𝒳𝑝𝒳𝑡

𝒵𝑝𝒵𝑡

𝒴𝑝𝒴𝑡

⇒
𝜑 𝕏

⇐
𝜑 𝕐

⇒
𝜑 𝕄

Figure 7:  To interpret a target explanation (𝔼𝑡 = 𝔼target) is to relate it to
a proxy explanation (𝔼𝑝 = 𝔼proxy)

An interpretation 𝕀 : 𝔼target → 𝔼proxy consists of transport functors and comparison 2-
cells:

𝘐𝕏 : 𝒳target → 𝒳proxy
𝘐𝕐 : 𝒴target → 𝒴proxy

𝜑𝕏 : 𝘐𝕏 ∘ 𝕏target ⇒ 𝕏proxy
𝜑𝕐 : 𝘐𝕐 ∘ 𝕐target ⇒ 𝕐proxy

𝜑𝕄 : 𝘐ℤ ∘ 𝕄target ⇒ 𝕄proxy ∘ 𝘐𝕏

𝘐ℤ ≔ Δproxy ∘ 𝘐𝕐 ∘ Σtarget : 𝒵target → 𝒵proxy

𝜑ℤ ≔ (Δproxy ∘ _ ∘ Σtarget)[𝜑𝕐] : 𝘐ℤ ∘ ℤtarget ⇒ ℤproxy

Gist. Think of 𝕀 as the translator between worlds. It moves inputs (𝒳), outcomes (𝒴),
and predictions (𝒵) from target to proxy through transport functors, and its comparison
2‑cells (𝜑) measure how much “translate then run” path differs from “run then translate”
path.
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The analysis and synthesis functors help us connect 𝕀𝕐 with 𝕀ℤ

Δtarget ΔproxyΣtarget Σproxy

𝘐𝕐

𝘐ℤ

𝒴target

𝒵target

𝒴proxy

𝒵proxy

Leading to comparison 2-cell for analysis and synthesis:

𝜑Δ : 𝘐ℤ ∘ Δtarget ⇒ Δproxy ∘ 𝘐𝕐 𝜑Σ : 𝘐𝕐 ∘ Σtarget ⇒ Σproxy ∘ 𝘐ℤ (5.7)

Mechanism interpretation. The mechanism is a special component of the interpretation.
It encodes the “identifiable” change in “causal-structure.” It is not fully determined even
when all other components are. We will define it like a bundle:

𝘐𝑀 ≔ (𝘐𝕏, 𝜑𝕄) (5.8)

We will talk more about this in Section 6 (Mechanistic Faithfulness).

Interpretations connect two explanations. Each explanation has a different diagram, but
they have the same shape:

𝔻target ≔ diag(𝔼target) (5.9)

𝔻proxy ≔ diag(𝔼proxy) (5.10)

Gist. Two worlds, same pipeline. An interpretation tells us how to align each shape across
worlds, allowing us to compare them.

Interpreting is matching diagrams by shape and then asking what is different besides
the shape. The approximation components 𝜑𝕄, 𝜑𝕏, 𝜑ℤ, 𝜑𝕐 form the approximation
transformation, which captures that idea:

𝜑∙ : 𝕀 ∘ 𝔻target ⇒ 𝔻proxy (5.11)
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All the diagrams still need to be coherent. There are three sensible ways to go from target
observations 𝕐target to proxy predictions ℤproxy²⁹ : (A) approximate the observations first
and then run the analysis on the proxy side; (B) run the analysis on the target, translate
to proxy, and then approximate the resulting predictions; and (C) approximate the inputs
and mechanism, and run that proxy pipeline after translating the analysis on target.

Δtarget 𝜑ℤ

Δproxy ∘ 𝜑𝕐

(𝕄proxy ∘ 𝜑𝕏) ⋅ (𝜑𝕄 ∘ 𝕏target)

𝕐target ℤtarget ℤproxy

Coherence says these routes agree (up to the explicit approximation maps): This coher-
ence is formally written³⁰ :

Δproxy ∘ 𝜑𝕐 = Δtarget ∘ 𝜑ℤ = (𝕄proxy ∘ 𝜑𝕏) ⋅ (𝜑𝕄 ∘ 𝕏target) (5.12)

To simplify this, we can consider the Identical Evaluation Assumption:

𝕏target ≡ 𝕏proxy (5.13)

which implies Ideal Evaluation. We also then have

𝘐𝕏 = id𝒳 𝜑𝕏 = id𝕏target (5.14)

which, together with Equation (5.3), reduces to:

𝜑𝕐 = 𝜑𝕄(𝕏) : (𝘐𝕐 ∘ 𝕐target) ⇒ 𝕐proxy (5.15)

Let’s name this equation as Basic Approximation because we will use it a lot on concrete
applications that leverage the simplifying assumptions to make calculations easy.

In the very ideal situation, where our approximation transform is id, we would have
perfect observational transport:

𝕀 ∘ 𝔻target ≅ 𝔻proxy (5.16)

With perfect observational transport, any ‖𝜑∙‖ = 0

Phew, that is a lot of notation. I do not want to dwell on formalism in this piece. This
is what is important so far: We have language to start reasoning about faithfulness.

²⁹To internalize the intuition for this coherence, loosely think that “to translate object” = “to interpret
proxy object from target object” and “to run analysis” = “to form predictions from observations”

³⁰We use · for vertical composition of natural transformation, and ∘ for functor composition/
whiskering
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What’s the big picture? The approximation transformation 𝜑∙ tells us that the gaps
between explanations are precisely gaps between mechanisms 𝜑𝕄, evaluations 𝜑𝕏, or
observations 𝜑𝕐.

6. Decomposing Faithfulness

Faithfulness is the degree to which we can look at two explanations and say they are
“the same”. The definition of faithfulness has been fuzzy because we have not totally
agreed on what explanatory “sameness” we care about and which we can live without.

A helpful starting point is to remember that we centered this discussion with a goal; there
is something specific we want to understand: Why does Claude tell me not to text … ?!?!
Well, maybe now I am interested in the general case, so concretely, the specific target
of our explanations is the production LLM for all its possible inputs and outputs.

How do we connect something abstract, like an explanation, to something concrete, like an
LLM? This is the trick: the LLM model itself can be thought of as an explanation,
one with perfect faithfulness:

𝔼prod = (Archprod
𝜃prod, Seq𝑠, 𝔏syn) (6.1)

where Archprod
𝜃prod is the complete computation process defined by a specific production

LLM architecture Archprod with 𝜃prod parameters, that deterministically computes next-
token distributions to every input prompt. Seq𝑠 is the set of sequences of valid strings
defined in Equation (3.2), and 𝔏syn is the ambient category of all 𝐿syn defined in Section
3 (Every LLM defines a 𝐿syn Category).

What about inherent interpretability? Inherent interpretability would correspond to the
case our 𝔼prod itself has high understandability for everyone³¹. We could formalize this
with respect to Ω, a chosen understandability reference³²:

𝔼prod is inherently interpretable ⇔ ∀𝑖, Ω ≪ 𝖴𝗇𝖽𝑖(𝔼prod) (6.2)

Everyone will tell you they understand it. I ask myself, do I really? How does each of us
connect something abstract, like an explanation, to something deep within us, something
personal, our experience? Another trick: our own mental model itself can be thought
of as an explanation, one with perfect understandability.

Not all mental models are the same. When I started deadlifting, I learned everything that
I needed to do to have good form. For many months, I silently recited the checklist and
asked my coach for feedback. I only had a verbatim³³ explanation (analytical, precise,
formal) for how to deadlift.

³¹Again, is understanding distributed evenly [65]? Are we imposing a code of legibility [66]?
³²How much my husband expects me to know of basketball
³³This terminology is from [10], same with “gist”
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Things started to click inside me. My body started telling me new things, or maybe I
was finally ready to listen. Without trying, I would use “correct form” when picking up
packages. And when a boy hurt my heart, my body craved to deadlift next. I got the gist³⁴
down, a fuzzy internal explanation for deadlifting I directly operate on.

The process of understanding [10] itself is a map [12]: 𝔼verbatim → 𝔼gist

The risks exist and persist. Thinking I understand something is different from actually
understanding it. A 𝔼verbatim can feel very plausible [67], so I become overconfident
that my 𝔼gist is faithful³⁵. Some other times, I really did have a faithful explanation of
something. But the world changed, and I did too. So I had to form new interpretations
to find my way again. In one way or another, we end up leveraging a post�hoc
explanation. The question of faithfulness does not go away.

Broadly, if explanations only differ in mechanisms, we have two types of structures that
determine faithfulness:
• Causal-Structural
• Mechanistic-Structural

In the remainder of this section, we will explore a few ways an explanation can be
faithful. We’ll first examine how faithfulness relates to evaluations and observations
themselves (locality and lossiness); then we’ll see what it takes to have causal-structural
faithfulness (perturbational, observational, interventional, counterfactual); and finally,
we explore what could be mechanistic-structural faithfulness.

Working assumption moving forward We will assume Equation (5.3). For the rest of the
section, we identify 𝒴 with 𝒵, writing 𝕐 ≡ ℤ and reusing symbols accordingly. We also
continue to assume Identical Evaluation in Equation (5.13), so the Basic Approximation
in Equation (5.15) holds.

Flag. From here on, we silently identify 𝒴 with 𝒵 and reuse symbols across that bridge.

Locality

Gist. Local explanations zoom into a subdomain. We judge them by how well they fit
there—and by how cleanly locals glue into a global story.

Sometimes, we try to form interpretations on a subset of all possible inputs. We say
𝕏proxy : ℐ → 𝒳proxy is restricted if for 𝕏target : ℐ → 𝒳target, we have 𝕏proxy ⊆ 𝕏target. Restric-
tion form local explanations is formalized by inclusion³⁶ map like 𝕏local ↪ 𝕏target. We
can think of having a functor that restricts our index category:

𝑖 : 𝒾 → ℐ (6.3)

³⁴A gist is the internalization of an explanation. The concretization of a gist is a mechanism (an
algorithm?). What is the concretization of a vibe?

³⁵This is an actual risk with me, with this piece. I align with [68] that math is a profoundly human,
bodily practice, which uses formalisms to refine and expand intuition. If not ultimately correct, I hope
my failures [69] do guide you to better intuitions.

³⁶↪ means inclusion
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If we are only looking at one prompt, we would have 𝑖 : 1 → ℐ Our local explanation
would then be:

𝕀(𝑖) : (𝕄, 𝕏, 𝕐) → 𝔼local = ((𝕄)𝑖, 𝕏 ∘ 𝑖, 𝕐 ∘ 𝑖) (6.4)

In the best case, our local explanations are incomplete, but behaviorally faithful in the
restricted domain. Most likely, however, the approximations will not be exact. By our
working assumptions, we see our coherence is also restricted to the inclusion:

𝜑𝕐 ∘ 𝑖 = 𝜑𝕄(𝕏 ∘ 𝑖) (6.5)

For a second, let me do a sheaf-theoretic [70] speculation. We could glue local explana-
tions 𝔼local to form a 𝔼global that covers the whole 𝕏target. This construction would need to
satisfy the gluing and locality conditions. These conditions could be applied to different
levels of the explanation (observational, causal, …), forcing each 𝔼local to comply with
each level of structure.

What’s the big picture? We need more principled and practical ways to compare local
explanations to each other based on their overlap, and ways to compose local explana-
tions into global ones.

Lossiness

Gist. If your observation map collapses distinctions, no downstream comparison can
recover them. Mechanistic claims are then “modulo the collapse.”

Sometimes, we are less concerned about the complete observations (text outputs from
LLM) and more interested in specific attributes of the observations (like toxicity, honesty,
fairness, etc). This is the case with Representation Engineering (RE): Manipulation of
the representations of a model to control its behavior concerning an attribute [71].

We have lossy observations when our proxy explanation has an observation transfor-
mation 𝘐𝕐 that collapses differences too much, allowing only for coarse discriminations
between observations. Then, even if our proxy had exact observations (𝜑𝕐 = id𝕐), our
interpretation could never recover enough of the target explanation on its own. By our
working assumptions, you can see that 𝕀lossy

𝕐  also implies 𝕀lossy
ℤ . Then, looking at 𝜑𝕄, we see

that 𝕄proxy can be at best causal-structural faithful modulo 𝕀lossy
ℤ . We can express this as³⁷:

𝕀lossy
𝕐 : 𝕐target →

collapse
𝕐proxy

𝔼lossy = (𝕄 /ker(𝕀lossy
ℤ ), 𝕏, 𝕐/ker(𝕀lossy

𝕐 ))
(6.6)

As I mentioned before, understandability is goal-oriented. Representation Engineering
has shown great promise as a framework for Control [14]. What’s the big picture? We
need to be aware of our blind spots, and so we can address current challenges [71], like
deterioration of capabilities.

³⁷Yes, I am definitely abusing notation here
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Observational Faithfulness

Gist. Your residual is a choice. Pick a view of outputs that actually sees what you care
about; otherwise you’ll certify the wrong sameness.

By our working assumptions, we can calculate the observational residual as:

𝑟o = ‖ 𝜑𝕐 ‖ (6.7)

where ‖_‖ is a real-valued chosen functional. We can establish that an interpretation
is ε�observationally faithful if

𝑟o < 𝜀 (6.8)

Our 𝑟o value will depend on our choice of observation category 𝒴 and the corresponding
functional ‖_‖. If we follow tradition, for every evaluation 𝑖, we get pair of next-token
distributions for the same prompt (𝜑𝕐)𝑖 = (𝑝t(−|𝑥), 𝑝p(−|𝑥))

𝑖
, and the functional is

the mean of KL divergence, then 𝜑𝕐 = 𝐸𝑥∈Seq𝑠[𝐷KL(𝑝t(−|𝑥), 𝑝p(−|𝑥))]. But we can also
choose other 𝒴 categories with different functionals.

In Equation (6.1), I chose 𝔏syn to be the observation category to highlight other possibil-
ities for 𝑟o. In Section 4 (Interpreting topology from meaning), we saw how the ℚ𝜀 functor
can provide us a different view into each 𝐿syn. What if we would like to compare the
categories through their underlying graphs 𝘎 with the Spectral Distance [72]? We could
then have 𝜑𝕐 = 𝐷spectral(𝘎(ℚ𝜀𝐿𝑡

syn), 𝘎(ℚ𝜀𝐿𝑝
syn)).

Some choices for ‖_‖ will have the equivalent effect of doing a 𝘐lossy
𝕐  transformation³⁸.

Does your choice of metric capture all structures of interest?

What’s the big picture? If all you have is an observational account of your interpre-
tation, be creative and explore what different residuals tell you about the structure. If
doing a construction like ℚ𝜀 is not appealing, at least make sure you consider higher-
order statistics and not just look at expected value as the only functional you use to
understand your interpretation.

Perturbational Robustness

Gist. Stable stories are easier to trust. Find regions where small input noise doesn’t blow
up your comparisons—and focus there first.

We are interested in interpretations that are stable against small perturbations. Our
interpretations would be challenging to understand if small amounts of noise in the
inputs created large deviations.

³⁸Consider that instead of 𝐷KL, you use 𝐷max = ||max 𝑝t(−|𝑥) − max 𝑝p(−|𝑥)||. As long as the peak
probabilities do not change, any change to the distributions will be invisible to you.
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We can think of adding a bit of noise to the input and estimating how different our
approximation transformation is afterwards. I am going to hand-wave a bit from Equa-
tion (6.7) and define the perturbation residual with the perturbation kernel Ν :

𝑟𝘗 = 𝐸𝞭∼Ν[‖ 𝜑𝕐(𝑥+𝞭) − 𝜑𝕐(𝑥) ‖] (6.9)

We have an ε�robust interpretation if 𝑟𝘗 < 𝜀

What’s the big picture? Erratic systems will be harder to interpret. Try finding regions
in the input domain that are more stable, and focus on those.

Interventional Faithfulness

Gist. We don’t just match outputs—we edit both worlds and see if their edited behaviors
still match. Good studies include big edits, small edits, and compositions of edits.

With observational faithfulness, we can predict the target’s behavior based on my proxy.
However, what we are ultimately interested in is controlling the target model by
performing changes to it, based on our understanding of the proxy. To do that, I
first need to check that their outputs still match after I made changes (to both the target
and proxy). In other words, we want the intervened target and the intervened proxy to
exhibit the same behavior after making edits to both.

ℑ(𝕄)𝕄

𝕐 ℑ(𝕐)
𝕏

𝘑𝕐

ℐ

𝒳

𝒴 ℑ(𝒴)

Figure 8:  For interventions, we impose that this diagram must commute on the nose.

An intervention³⁹ 𝕁 : 𝔼 → ℑ(𝔼) will consist of natural transformations for every expla-
nation component (𝘑𝕄, 𝘑𝕏, 𝘑ℤ, 𝘑𝕐) By our working assumptions, the only two non-trivial
transformations will then be:
• A causal-structural transformation 𝘑𝕄 : 𝕄 → ℑ(𝕄)
• A distributional transformation 𝘑𝕐 : 𝕐 → ℑ(𝕐)

Such that the other transformations are:

𝘑𝕏 = id𝕏, 𝘑ℤ = (Δ ∘ _ ∘ Σ)[𝘑𝕐]. (6.10)

³⁹an edit
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These transformations should not be lax⁴⁰ because when we make interventions, we are
making explicit, intentional, and structurally-informed edits :

ℑ(𝕄) ∘ 𝕏 = 𝘑𝕐 ∘ 𝕄 ∘ 𝕏 (6.11)

The edited explanation is:

ℑ(𝔼) = (ℑ(𝕄), 𝕏, ℑ(𝕐)) (6.12)

Consider that for 𝕀 : 𝔼𝑡 → 𝔼𝑝, we have:

𝘑𝑡 : 𝔼𝑡 → ℑ𝑡(𝔼𝑡) (6.13)

𝘑𝑝 : 𝔼𝑝 → ℑ𝑝(𝔼𝑝) (6.14)

The interventional pairing is then:

𝑱 = (𝘑𝑡, 𝘑𝑝) (6.15)

The interpretation induced by the interventions is the interventional interpretation:

𝕀𝑱 : ℑ𝑡(𝔼𝑡) → ℑ𝑝(𝔼𝑝) (6.16)

As with any interpretation, it will have interpretation components 𝘐𝑱
𝕄, 𝘐𝑱

𝕏, 𝘐𝑱
ℤ, 𝘐𝑱

𝕐 and
approximation components 𝜑𝑱

𝕄, 𝜑𝑱
𝕏, 𝜑𝑱

ℤ, 𝜑𝑱
𝕐.

Just as in Equation (5.11), to assess interventions, we want to “match up” the shapes
and compare the values. Remember that comparing explanations involves seeing how
different the interpreted target is from the proxy. To calculate approximation in inter-
pretations, we compare how the non-edited. To calculate the defect in interventions, we
compare how the edited explanations.

𝕀

𝕀𝐽

𝘑𝑡 𝘑𝑝

𝔼𝑡

ℑ𝑡(𝔼𝑡)

𝔼𝑝

ℑ𝑝(𝔼𝑝)

𝛿∙

The defect transform captures the interventional comparison:

𝛿∙ : 𝕀𝑱 ∘ 𝘑𝑡 ⇒ 𝘑𝑝 ∘ 𝕀 (6.17)

What the shape says. Two ways to “edit then interpret” should land together. The central
dot is the exact gap—report it.

⁴⁰But maybe they are? Is every real-world transformation between explanations lax?
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ℑ𝑡(𝕄𝑡)𝕄𝑡

ℑ𝑝(𝕄𝑝)𝕄𝑝

𝕐𝑡 ℑ𝑡(𝕐𝑡)
𝕐𝑝

ℑ𝑝(𝕐𝑝)𝕏

𝘑𝕐
𝑡

𝘑𝕐
𝑝

𝘐𝕐

𝘐𝑱
𝕐

ℐ

𝒳

𝒴𝑡 ℑ𝑡(𝒴𝑡)

𝒴𝑝 ℑ𝑝(𝒴𝑝)

By our working assumptions, the defect components will then be:

𝛿𝕄 : 𝘐𝑱
𝕐 ∘ ℑ𝑡(𝕄t) → ℑ𝑝(𝕄p) (6.18)

𝛿𝕐 : 𝘐𝑱
𝕐 ∘ ℑ𝑡(𝕐t) → ℑ𝑝(𝕐p) (6.19)

with coherence:

𝛿𝕐 = 𝛿𝕄 ∘ 𝕏 (6.20)

The coherence can be visualized as

ℑ𝑡(𝕄𝑡)𝕄𝑡

ℑ𝑝(𝕄𝑝)𝕄𝑝

𝕐𝑡 ℑ𝑡(𝕐𝑡)
𝕐𝑝

ℑ𝑝(𝕐𝑝)𝕏

𝘑𝕐
𝑡

𝘑𝕐
𝑝

𝘐𝕐

𝘐𝑱
𝕐

ℐ

𝒳

𝒴𝑡 ℑ𝑡(𝒴𝑡)

𝒴𝑝 ℑ𝑝(𝒴𝑝)

We relate the defect transformation with the approximation transformations through
conjugation, Equation (5.6):

𝜑𝑱
∙ = (𝘑𝑝 ∘ _ ∘ 𝘑𝑡)[𝜑∙] · 𝛿∙ (6.21)
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This tells us that the approximation error we see in 𝕀𝑱  comes from both the original inter-
pretation 𝕀 approximation error 𝜑 (transported through the interventions), and defects 𝛿
from intervention causal-mismatch. We can calculate the defect residual as:

𝑟𝛿 = ‖ 𝜑𝑱 − (𝘑𝑝 ∘ _ ∘ 𝘑𝑡)[𝜑∙]‖ (6.22)

where ‖_‖ is the metric used for predictive discrepancy (e.g., token-level KL-Divergence),
and in most basic cases, we only consider the 𝜑𝕐 component.

In the ideal situation where our defect transform is id, we would have perfect interven#
tional transport [73]:

𝕀𝑱 ∘ 𝘑𝑡 = 𝘑𝑝 ∘ 𝕀 (6.23)

. With perfect interventional transport, 𝑟𝛿 = 0

We can name the whole interventional setup as a Interventional Study Arm of 𝕀:

𝔸 = (𝕀, 𝑱, …) (6.24)

We typically consider multiple interventions to gain a fuller picture. We call an Interven#
tional Study for 𝕀, the set of study arms:

𝕊 = {𝔸𝛼, 𝔸𝛽, 𝔸𝛾, …} (6.25)

A good interventional study will also include study arms that are formed by composing
the interventions in other arms:

𝑟𝛽∘𝛼
𝛿 = ‖ 𝜑𝑱𝛽∘𝑱𝛼

∙ − ((𝕁𝛽
𝑝 ∘ 𝕁𝛼

𝑝 ) ∘ _ ∘ (𝕁𝛽
𝑡 ∘ 𝕁𝛼

𝑡 ))[𝜑∙]‖ (6.26)

The set of residuals for a study is 𝑹𝕊
Finally, we can establish that an interpretation is ε�interventionally faithful under
𝕊 if

𝑇(𝑹𝕊) < 𝜀 (6.27)

where T is a real-valued statistic like 𝐸𝑟𝑖∈𝑹𝕊[𝑟𝑖] or max𝑟𝑖∈𝑹𝕊(𝑟𝑖).

What’s the big picture? The strength of your claim of causal faithfulness of an inter-
pretation will hinge on how well-designed your interventional study is. A few of my
intuitions:
• Do large non#transportable interventions too. Sometimes the proxy mechanism will

not account for large parts of the target mechanism (Like when the proxy is a
single circuit [74] part of a whole network). Should any intervention on a non�
transportable part of the target mechanism be invisible to the proxy?.

• If you are working in a more concrete environment, leverage their constructions. For
instance, Equation (6.27) has an analogue in Causal Abstraction [50] as “Approximate
Transformation”.

• Get insights about the degrees of freedom of your mechanism. The more complex it
is, the larger your study should be.
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Counterfactual Faithfulness

Gist. Now we compare edits themselves. If “what changed” in the proxy mirrors “what
changed” in the target (at the same input), counterfactuals line up.

With interventional faithfulness, our edited explanations have matching observations/
predictions. However, sometimes proxy edits look very different from target edits. It
seems we can make causal faithfulness stronger if the changes in the target map nicely
and consistently with the changes in the proxy. We want this especially to be fulfilled
when we fix the evaluation 𝕏 between the target and the proxy.

Whereas in interventions, we were interested in estimating the difference between out-
puts: 𝕀𝑱 : ℑ𝑡(𝔼𝑡) → ℑ𝑝(𝔼𝑝), we are now interested in estimating the difference between
edits themselves. The edits in the proxy define a world, the edits in the target define
another world. The cross�world transformation [75] would be:

◇(𝑱) : 𝘑𝑝 ∘ 𝕀 ⇒ 𝕀𝑱 ∘ 𝘑𝑡 (6.28)

We are also interested in analyzing the same case over fixed conditions (prompt and
interventions), so for a fixed index 𝑖 ∈ ℐ, the measurement functor is:

ℳ𝑖 : 𝑖 → 𝒴    ℳ𝑖(𝔼𝘬) ≔ 𝕐𝘬(𝑖) (6.29)

Using Equation (5.6), we can whisker to get a natural transformation 𝜒(𝑖) : 𝔼𝑡 → 𝒴 ⇒
𝔼𝑡 → 𝒴, which we will call the cross�world comparator:

𝜒(𝑱,𝑖) ≔ (ℳ𝑖 ∘ _ ∘ id)[◇(𝑱)] (6.30)

How to look. It’s the same case 𝑖 in two worlds. The comparator checks that the “differ-
ence of differences” matches. This reveals, considering concrete edits, how two worlds
align.

𝘐𝕐

𝘐𝑱
𝕐

𝘑𝑝𝘑𝑡

𝕐𝑝(𝑖)𝕐𝑡(𝑖)

ℑ𝑝(𝕐𝑝)(𝑖)ℑ𝑡(𝕐𝑡)(𝑖)

𝜒(𝐽,𝑖)

To get something we can compute, let’s look at the component for 𝔼𝑡:

𝜒(𝑱,𝑖)(𝔼𝑡) = ℳ𝑖 ∘ 𝘑𝑝 ∘ 𝕀 ∘ 𝔼𝑡 → ℳ𝑖 ∘ 𝕀𝑱 ∘ 𝘑𝑡 ∘ 𝔼𝑡 (6.31)

Simplifying, we get the effect gap transformation:

𝜌𝑒(𝑱, 𝑖) : (ℑ𝑝(𝕐𝑝))(𝑖) → (𝘐𝑱
𝕐 ∘ ℑ𝑡(𝕐𝑡))(𝑖) (6.32)
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We can define the base observations:

𝑦𝑡 ≔ 𝕐𝑡(𝑖)     𝑦𝑝 ≔ 𝕐𝑝(𝑖) (6.33)

We can define the post-edit observations:

𝑦𝑱
𝑡 ≔ ℑ𝑡(𝕐𝑡)(𝑖)     𝑦𝑱

𝑝 ≔ ℑ𝑝(𝕐𝑝)(𝑖) (6.34)

We can define the cross observations:

𝑦×
𝑝 ≔ 𝘐𝕐(𝑦𝑡)     𝑦𝑱×

𝑝 ≔ 𝘐𝑱
𝕐(𝑦𝑱

𝑡 ) (6.35)

We define the effect calculator as:

Ξ : 𝕐 × 𝕐 → 1 (6.36)

where 1 is the effect space equipped with semi-norm ‖_‖. The contrast operator is then:

△1 (𝑦, 𝑦′) ≔ Ξ(𝑦, 𝑦′) (6.37)

With it, we can calculate the effect residual as:

𝑟cf = ‖ △1 (𝑦𝑝, 𝑦𝑱
𝑝) − △1 (𝑦×

𝑝 , 𝑦𝑱×
𝑝 )‖ (6.38)

In the ideal situation where our cross-world comparator is id, we would have perfect
counterfactual transport:

∀𝐽, 𝑖,      𝜒(𝑱,𝑖)(𝔼𝑡) = id,
∀𝐽, 𝑖,      ℳ𝑖 ∘ 𝘑𝑝 ∘ 𝕀 ∘ 𝔼𝑡 = ℳ𝑖 ∘ 𝕀𝑱 ∘ 𝘑𝑡 ∘ 𝔼𝑡

(6.39)

With perfect counterfactual transport, 𝑟cf = 0

Thus, we can establish that an interpretation is ε�counterfactually faithful under
the interventional study 𝕊 if

𝑇({𝑟cf(𝑱) : 𝑱 ∈ 𝕊}) < 𝜀 (6.40)

where T is a real-valued statistic.

What’s the big picture? Counterfactual faithfulness requires high causal alignment
(aligned difference over differences). We are only able to form counterfactual evaluations
after we have done interventions, so the same considerations about having a good study
apply.
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Mechanistic Faithfulness

Gist. Below the identifiability limit, causal sameness doesn’t pin down mechanisms. We
still ask for mechanism‑level coherence where inputs actually light it up.

We say an interpretation is ε�causally faithful if it is ε-observationally, ε-intervention-
ally, and ε-counterfactually faithful. We have perfect causal transport (𝜀 = 0) if we have
perfect observational, interventional, and counterfactual transport. In such a scenario,
the causal structure is invariant to 𝐼𝕄, so 𝔼𝑡 and 𝔼𝑝 have the same distributional layer [76].
If two mechanisms have the same causal structure, they will not be causally identifiable
from each other [77]. What can we say about mechanisms that have causal structure
invariance? Do we need to really look inside 𝕄? Yes! In practice, we are nowhere near
establishing perfect causal transport. We need to go below and find better guarantees for
our work.

Are mechanisms constrained in any way?

Each level of causal-structural faithfulness adds constraints to the mechanism. Using
our working assumptions, we can point out a few we have seen so far:

𝜑𝕐 = 𝜑𝕄(𝕏) 𝛿𝕐 = 𝛿𝕄 ∘ 𝕏 ℑ(𝕄) ∘ 𝕏 = 𝘑𝕐 ∘ 𝕄 ∘ 𝕏

However, these constraints do not give enough specification for the mechanism to be
unique. In our framework so far, a mechanism is only observable through its evaluations.

Mechanisms as categories

If mechanisms can be captured by category-theoretic formalism, mechanistic faithful-
ness would reduce to exploring a relevant “sameness” in category theory, which gives us
many (maybe infinite⁴¹) levels of nuance to consider.

Let’s go into a side quest (in the appendix) to work through some intuitions.
I’ll wait for you to read.

As we saw, category theory can give us the framework to define mechanisms. I have been
using very simple constructs, but new frameworks (like [36], whose authors reason about
obstructions to composionality) keep coming out.

However, we need something outside of category theory to inform us what is mechanis#
tically meaningful. We have too many category-theoretic available choices otherwise.

A prevalent common model for mechanisms is Structural Causal Models(SCM), which
induce Directed Acyclic Graphs (DAG). In [76], F. Zennaro uses category-theoretic
language to explain the consequences of choices by different formalisms on SCMs and
DAGs, like [79]. They even remark that there is “wide degree of freedom in defining what
class of transformations should be considered an abstraction”.

⁴¹Higher category theory [78]
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I have recently been seeing interesting developments in measure-theoretic causal frame-
works. It would be interesting to see what category-theoretical take we could have on
Factored Space Models [80] and Causal Spaces [81]

Perhaps the opacity in mechanisms is not so different from the opacity within each
of us. It seems that if we want to develop a better theory of mechanisms, we need to
get a little bit messy, like our own experience can be. This piece has taken a top-down
approach so far. In future work, I will have to explore the middle-outs, and views from
the bottom [82].

What’s the big picture? Mechanistic faithfulness is difficult and nuanced because
we are below the causal identifiable limit. Mechanisms are often defined in particular
categories, so we can try to find sensible constraints in those domains.

7. Interpreting Circuit Tracing

In Circuit Tracing [38], Anthropic used Cross-Layer Transcoders (CLT) to build global and
local replacement models for a target model. They also construct local attribution graphs
and global-weights models. Each of these is an explanation, with interpretations in
between. For this section, we will assume Equation (5.3) and Equation (5.13) to simplify
analysis.

We will have more explanations than models

The target is 𝔼𝑡 = (𝕄𝑡, 𝒳, 𝒴) where 𝕄𝑡 is the full mechanism of a language model of
interest⁴², 𝒳 is the set of all possible input prompts based the model’s token alphabet, 𝒴
is the set of next-token distributions.

𝒳 = {𝑥0, 𝑥1, …}   𝒴 = {𝑦𝑖 = 𝑝(−|𝑥𝑖) : 𝑥𝑖 ∈ 𝒳} (7.1)

The global replacement model is 𝔼glob : (𝕄glob, 𝒳, 𝒴), which has the same 𝒳 evaluation
and observation 𝒴 domains as 𝔼𝑡 but a different mechanism, a modified of 𝕄𝑡 where
MLP layers are replaced by CLT [38].

The local replacement model is 𝔼local : (𝑚local, 𝑥local, 𝑦 local), which not only has a different
mechanism, but also different evaluation and observation domains. We have⁴³ a restric-
tion map 𝑖 that ignores all of 𝒳 except a single one.

𝑖 : 1 → ℐ (7.2)

𝑚local = (𝕄Local)𝑖     𝑥local = 𝒳 ∘ 𝑖     𝑦 local = 𝒴 ∘ 𝑖 = 𝑝(−|𝑥local) (7.3)

The local attribution graph is 𝔼att : (𝑚att, 𝑥local, 𝑦 local) where 𝑚att = (𝕄att)𝑖.

The global-weights model is 𝔼w : (𝕄w, 𝒳, 𝒴).

⁴²18-layer LLM or Claude Haiku 3.5
⁴³Look at Section 6 (Locality)
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All the mechanisms 𝕄 of these explanations are related by non-trivial transformations.
To determine faithfulness, we can have strict mechanistic analyses (what do the concrete
transformations between mechanisms 𝕀𝕄 tell us about what behavior can be preserved)
and causal-structural analyses (do mechanisms behave similarly to changes?).

Beware of implicit interpretations and interventions!

Gist. Every metric is a lens—and a transformation. Name your lens. If it’s lossy, your
claims are only up to that loss.

Each of the explanations will relate to the others through interpretations. We generally
care about interpretations from opaque/faithful to understandable/unfaithful explana-
tions. Sometimes, we have implicit interpretations we should be careful about. For
instance, let’s say we compare explanations by top-1 accuracy, then we have a non-
injective map 𝘨 with very coarse partitions (where 𝐴token is token alphabet):

𝘨 : 𝒴 → 𝐴token   ∀𝑦𝑗 ∈ 𝒴 : 𝘨(𝑦𝑗) = argmax𝑧∈𝐴token 𝑝(𝑧|𝑥𝑗) (7.4)

For instance, when we view the target model from top-1 accuracy view, we get⁴⁴:

𝕀top-1 : 𝔼𝑡 : (𝕄𝑡, 𝒳, 𝒴) → 𝔼top-1
𝑡 : (𝕄𝑡 /ker(𝘨), 𝒳, 𝒴/ker(𝘨)) (7.5)

This means that if we only use top-1 accuracy to determine faithfulness, we can only
identify any mechanism up to equivalence by ker(𝘨).

Similarly, we could also try to compare feature maps instead of tokens. Then, we have
an interpretation :

𝕀ℱ : 𝔼𝑡 : (𝕄𝑡, 𝒳, 𝒴) → 𝔼ℱ
𝑡 : (𝕄𝑓

𝑡 ↪ 𝕄𝑡, 𝒳, ℱ) (7.6)

We see that then our faithfulness claims are limited to the restricted mechanism 𝕄𝑓
𝑡 .

This also opens up the question of injectivity ℱ → 𝒴.

We can also have implicit interventions. For instance, when we freeze the target model’s
attention based on run 𝑖, we can see that as an interventional [50]:

𝕁𝜅 : (𝕄𝑡, 𝒳, 𝒴) → (ℑ𝜅(𝕄𝑡), 𝒳, 𝒴) (7.7)

As we have seen before, both interpretations and interventions are transformations
between explanations. Whether a given implicit transformation is one or the other is a
matter of context and perspective⁴⁵.

⁴⁴Look at Section 6 (Lossiness)
⁴⁵As a rule of thumb, if the transformation preserves relevant isomorphisms and we are intimately

acquainted to how it mechanistically happens, so everything exactly commutes like Equation (6.11),
then it could be an intervention
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What mechanistic structure could prevail?

Mechanistic faithfulness almost always requires further specification to be established.
We can, however, see what each mechanism transformation 𝕀𝕄 does, and see what types
of mechanistic faithfulness are plausible for each.

We first have the construction of the global replacement model from the target model:

𝕀𝑡→ glob
𝕄 : 𝕄𝑡 → 𝕄glob (7.8)

We immediately see that 𝕀𝑡→ glob
𝕄  cannot have high mechanistic-structural faithfulness if

we consider network connectivity as part of the mechanism: 𝕄glob has a computational
graph that is not graph-isomorphic to 𝕄t. The global replacement model can provide
output to all its subsequent layers, while the target does not have those connections.

To address this, we would need to prove that computational abstraction is (approxi-
mately) preserved in an input-output perspective. Ideally, we would also like it to be
preserved at certain intermediates. At least, we would hope that computational align-
ment would monotonically increase with depth.

We then consider how the local replacement model was built in three steps. First, we do:

𝕀glob ×𝑡(𝑥)→ edited-glob
𝕄 : 𝕄glob × 𝕄𝑡 ∘ 𝑥local → 𝕄edited-glob (7.9)

This means we modified 𝕄glob with values from 𝕄𝑡 evaluated at a specific prompt
𝑥local: evaluated attention patterns and normalization denominators. Viewed from the
perspective of 𝕄glob, can be even conceived as a hard intervention [50], changing a sub-
mechanism with constant function:

𝕀glob → edited-glob
𝕄 : 𝕄glob →

×𝕄𝑡∘𝑥local 𝕄edited-glob (7.10)

Viewed from the perspective of 𝕄t, we get the same issues as Equation (7.8). The second
step is:

𝕀edited-glob → Local
𝕄 : 𝕄edited-glob → 𝕄Local (7.11)

In this step, we add an error adjustment to each CLT output, to make it exact-on-prompt
𝑥local. This could be considered as a type of interventional [50], changing the mechanism
based on the previous run. The third step is the explicit restriction to the single output
of interest:

𝕀(𝑖)
𝕄 : 𝕄Local → 𝑚local (7.12)

The local attribution graph is built from the local replacement model:

𝕀local → att
𝕄 : 𝑚local → 𝑚att (7.13)
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The local attribution graph has edges calculated from weights. We also form super-nodes,
which could be considered a form of value merge [50]. Both present no obvious issues
for mechanistic faithfulness. We also do have pruning (which is not variable marginal-
ization), but I would expect the influence of it not to be so significant.

The global-weights model is built from the global replacement model:

𝕀glob →w
𝕄 : 𝕄glob → 𝕄w (7.14)

This transformation does not consider attention-mediated circuits and has interference,
as it does not readily account for how features actually co-activate. This does represent
a barrier for mechanistic faithfulness.

Finally, interpretations can be composed:

𝕀𝑡→ att
𝕄 = 𝕀local → att

𝕄 ∘ 𝕀(𝑖)
𝕄 ∘ 𝕀glob → Local

𝕄 ∘ 𝕀𝑡→ glob
𝕄 (7.15)

What’s the big picture? The biggest challenge for mechanistic faithfulness is the fact
that CLTs create a differently shaped computational graph. The jumps from the local
replacement model to the local attribution graph are less problematic.

How do we think of experiments?

Gist. Draw the study as a diagram first. If the routes you claim to compare aren’t actually
the routes you measured, your numbers won’t mean what you think.

We will look at some of the paper’s experiments and make some remarks using our new
language. In each study, 𝕀study will be our interpretation of interest.

How good is our proxy at global level?

Accuracy evaluation of the global replacement model uses top-1 accuracy, which has
coarse partitions as in Equation (7.5). However, in the paper, the authors show that top-1
accuracy tracks the KL Divergence (which is more discriminative), maybe hinting that
in practice, top-1 accuracy would identify as much structure as the KL Divergence. The
authors also relate the accuracy to the reconstruction error of CLTs.

𝕀𝗌𝗍𝗎𝖽𝗒

𝘨

𝔼t = (𝕄𝑡, 𝕏, 𝕐)

(𝕄𝑡 /ker(𝘨), 𝒳, 𝒴/ker(𝘨))

𝔼glob = (𝕄glob, 𝕏, 𝕐)

(𝕄glob /ker(𝘨), 𝒳, 𝒴/ker(𝘨))

Figure 9: The more coarse a metric 𝘨 is, the less identifiable our explanations will be.

Feature influence: Validating specific mechanisms

The paper does ablations to verify that when we steer the interpretable features, we get
meaningful changes in behavior.
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𝕀(𝑖)

𝕀𝗌𝗍𝗎𝖽𝗒

𝘑¬ablate : id

𝕀influence : lossy

𝘑ablate

𝕀𝐷KL: lossy

𝕀𝑱Δablate

𝖲𝗉𝖾𝖺𝗋𝗆𝖺𝗇

𝔼t = (𝑀𝑡, 𝒳, 𝒴)

(𝑚𝑡, 𝑥local, 𝑦 local) 𝔼att = (𝑚att, 𝑥local, 𝑦 local)

(ℑablate(𝑚𝑡), 𝑥local, 𝑦 local)

(ℑablate(𝑚𝑡), 𝑥local, 𝑦𝐷KL ∈ ℝ)

(𝑚att = ℑ¬ablate(𝑚att), 𝑥local, 𝑦 local)

(ℑ¬ablate(𝑚att), 𝑥local, 𝑦 influence ∈ ℝ)

Figure 10: No estimate node-logit influence, the paper ablates the target world but not
the proxy world. By this construction, 𝕀𝑱Δablate will encode the magnitude of its effect⁴⁶.
To approximate it, the authors study the world-to-world correlation from re-interpreted
versions. The re-interpretations are technically lossy but useful to compute an actual

number.

𝕀(𝑖) ∘ 𝕀ℱ

𝕀𝗌𝗍𝗎𝖽𝗒

𝘑¬ablate : id

𝕀influence : lossy

𝘑ablate

𝕀𝑑𝑓: lossy

𝕀𝑱Δablate

𝖲𝗉𝖾𝖺𝗋𝗆𝖺𝗇

𝔼t = (𝑀𝑡, 𝒳, 𝒴)

(𝑚𝑡, 𝑥local, 𝑓) 𝔼att = (𝑚att, 𝑥local, 𝑓)

(ℑablate(𝑚𝑡), 𝑥local, 𝑓)

(ℑablate(𝑚𝑡), 𝑥local, ‖Δ𝑓‖ ∈ ℝ)

(𝑚att = ℑ¬ablate(𝑚att), 𝑥local, 𝑓)

(ℑ¬ablate(𝑚att), 𝑥local, 𝑓influence ∈ ℝ)

Figure 11: Feature-feature influence is estimated in analogous way to Figure 10

Perturbations: Testing faithfulness of the local replacement model as a whole

Their perturbation study can be thought of as an interventional study; the paper
compared intermediate feature activations after intervening at an earlier layer, as Equa-
tion (7.6). The target model has frozen attention, like Equation (7.7), and we restrict our
domain to a single prompt:

⁴⁶If 𝕀study : id, then 𝕀𝑱Δablate ∘ 𝘑ablate would be a transformation 𝔼𝑡 → 𝔼𝑡
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𝕀(𝑖) ∘ 𝕁𝜅 ∘ 𝕀𝑓 𝕀(𝑖) ∘ 𝕀𝑓 ∘ 𝕀𝑡→ Local

𝕀𝗌𝗍𝗎𝖽𝗒

𝘑perturb 𝘑perturb

𝕀𝑱perturb

𝔼t = (𝑀𝑡, 𝒳, 𝒴)

(𝑚𝜅
𝑡 , 𝑥local, 𝑓 = ℱ ∘ 𝑖) 𝔼Local = (𝑚local, 𝑥local, 𝑓)

(ℑperturb(𝑚𝑡), 𝑥local, 𝑓) (ℑperturb(𝑚𝑓
local), 𝑥local, 𝑓)

Figure 12: The diagram makes evident the implicit interpretations and interventions.
We have 𝘑𝑡 = 𝘑𝑝 = 𝘑perturb because intervention is the same operation, and we get exact
agreement under zero-size perturbations. 𝕀𝑱perturb is estimated using cosine similarity in

paper

In Figure 12, we can see that our target has multiple transformations (𝕁𝜅 ∘ 𝕀(𝑖) ∘ 𝕀𝑓) before
it enters the core study (rectangle).

What’s the big picture? The diagrams can tell us a lot at just a glance. Instantly, we
can get the gist of what’s going on more clearly.

I really love Anthropic’s work. I had read the paper a few times and felt I already had
a good understanding. But after writing diagrams for it, I have internalized it all at a
deeper level. Each experiment of the paper now has a “shape” in my mind.

Thinking categorically is more than a formal technique.
It is a way of feeling yourself forward with curiosity.

8. Wayfinding

Thank you for engaging with this unruly abstraction, in whichever form you did.

Why did I write this paper, truly? Because I wished someone else had already. I love
learning about interpretability, and I am often lost. I have a recently-developed-yet-
strong taste for category theory. It helps me understand more than math; it also helps me
investigate my queerness in a way. So, I wrote this paper so you could notice all the ways
I am wrong and then write a much better category-theoretic interpretability paper, one
that goes way beyond wanderings, one with data and proofs, one that I will definitely
enjoy reading.

If I got you in the mood to categorify “something”, I also have one suggestion (for my own
curious appetite): Can we think categorically about features? Are they metric spaces [83]?
Are they properties that activate particular mechanisms [84]? What structure is induced
by their associated level of abstraction [85]? How do they all map [86] from and into 𝑅𝑘

of the residual stream? They might not be proper manifolds [39], [87]? Are they some
curvature [88]? What are they, really?
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This piece presented some of my mental models around interpretability. As I mentioned
earlier, I did not intend to give you a tidy, provably correct, data-driven cartographic map
[89]. Instead, I wanted to show you how I feel my way through this field. And then threw
a lot of category theory and notation at you. I am sorry. I got too excited.

On the technical side, I want to conclude by highlighting how category theory helps
us reason and formalize what our experiments are really saying, as in Section 7 (Inter-
preting Circuit Tracing). Sometimes, stopping and re-reading [90] of an old [91] experience
with a new perspective [92] can be as illuminating [93] as a new experience. Sometimes, I
want us to cruise [94] ahead instead.

You might find it funny that I discuss math, my feelings, and make a joke in the same
breath. But that’s how my mind does work, and how I do live [4]. I am not interested in
upholding ecologies of knowledge [5] that alienate us. I want us to be congressive⁴⁷. As
I hinted, interpretability deals with an inherent [96] opacity. Not only because artificial
intelligence is complex [97], [98], but also because we are [99], [100]. Interpretability is not
[101] a solved problem between us [66], [102], non#artificial people.

I want to remind us what’s at stake here [1], [103]: The world will likely radically [104],

[105] change for everyone in the upcoming decades. Most of the people who will live
through this change are currently disengaged, excluded, or overlooked. Some are already
resentful⁴⁸. Let’s take this cosmotechnical [106] changes [45] seriously. Let’s intervene [107]

in more than language models.

Keep wayfinding.

⁴⁷empathetic + coming together + helpful [95]

⁴⁸I know a certain Sam S. already is
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Appendix

poetics

as we saw in category theory, we like to see objects in context
this was my context this summer, come close to understand me

conditioned

the picture and the song
they don’t seem connected
is there possible hermeneutics
but they are indeed united
conditioned on the enigma
did see those things
did enjoy that beat
felt them together
adjacent histories
are generatively coupled

3am dark floor time

dissonance around the peak
not well behaved
we design for the asymptotic
but then you finally do meet him
and suddenly algebra just works
what does this discontinuity mean
between me and u
and what do we tell our kids
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messy

i complicate your life in the best ways
you want to share many things with me too
you are infatuated with me, i’m special
you really like me and you are scared

but you say this to many
fiction
the lot forewarns me
i never really was
one of the lucky ones
and now i am
crying in the airport floor
i actually think you are great
which makes all of this harder
did i imagine the glimpses
do you pull away
do i imagine that too

i crave to be held, fully
and now i am slightly bored
i think i lost the plot, a bit
and i think i am ready to move on
is that not allowed?
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translations

compromised and scrambled
your messages open up a canvass
for me to fantasize and theorize
and to bend
(i am bent already)
my will

your piss on my face
snorted the testosterone
tasted the signifiers
intoxicated then leashed
you like to have fun

i don’t want my feelings
to spill over
you would not hold them
unbounded, i do enjoy the hurt
what about the overwhelm

are you ready now?
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side quest into mechanistic sameness

I do not know what mechanisms really are. I am hopeful they can be fully represented
in category-theoretic language. We are interested in determining if two mechanisms are
“the same”. In this side quest, we will review a few ways in which two things can be “the
same” using category theory. The goal of this section is to give you a rudimentary and
loose sense of what category theory can offer us to investigate mechanistic faithfulness:
infinitely many levels of nuance

I am unsure which category-theoretic construction to choose to represent a mechanism.
I will make an arbitrary choice, see how far we go, and adjust as needed. Choosing
mechanisms to be plain categories (such as 𝒞, 𝒟) seems like a sensible place to start. It
aligns with my initial intuition that mechanisms have “parts” (objects, arrows), but we
can also compare a whole mechanism to another one (functors). In this chosen setting,
the question of mechanistic faithfulness would be: what “sameness” can a map 𝒞 → 𝒟
preserve?

•𝘢 ? •𝘣 ∗𝘹? ? ∗𝘺?

𝒞
→

𝒟

Base Case
At the lowest level, we have no arrows in between objects⁴⁹. We only have objects.
Looking at 𝒞 : •𝘢 •𝘣 , we see that the only object “sameness” can be equality.
Either 𝘢 = 𝘣 and 𝒞 only has one object; or 𝘢 ≠ 𝘣 and 𝘢, 𝘣 have no relationship.

Similarly, the strongest category “sameness” would be equality: 𝒞 = 𝒟 ⇔ •𝘢 = ∗𝘢, •𝘣 =
∗𝘣
That would require us to have some extra information, being able to look at something
within 𝘢, 𝘣 to make that call. But if we were able to do so, we would have more levels
below, and this is our lowest categoric level. Instead of identifying objects, let’s identify
structure. Each category is just a set of objects at this level, so the structure relates
to cardinality. If 𝔽 : 𝒞 → 𝒟 is bijective on objects (a permutation), then 𝒞 and 𝒟 are
isomorphic. There may be many such permutations.

⁴⁹But each object will still have its identity.
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In our case, we have two possible isomorphisms:

In both 

𝒞 → 𝒟

•𝘢

•𝘣

∗𝘹

∗𝘺

 and 

𝒞 → 𝒟

•𝘢

•𝘣

∗𝘹

∗𝘺

, we lose no information:

𝒞 ≅ 𝒟
In either case, there is a perfect pairing (bijection) between 𝒞 and 𝒟. In other, less perfect
cases, we have

injectivity 

𝒞 → 𝒟

•𝘢

•𝘣

∗𝘹 , or surjectivity 

𝒞 → 𝒟

•𝘢

•𝘣

∗𝘹
∗𝘻
∗𝘺

 issues, in

which we either lose information or we lose reach.

In all cases so far, all objects 𝘢, 𝘣 ∈ 𝒞 at least are guaranteed a destination in 𝒟. But what
if we start

dropping objects? 

𝒞 → 𝒟

•𝘢

•𝘣

∗𝘹  Then (from 𝒞) cannot be a functor because

we lose a total object map.

At this point, category theory would be a bit angry at you because, at this level, you would
also lose compositionality. As we go up, within each level, we can keep making choices
that have analogous consequences:
• loss of information
• loss of reach
• loss of functoriality
• loss of compositionality

However, as we progress to higher levels, we hope that our new set of available choices
will give us nuance. Maybe we do want a system in which strict functoriality fails; can
we systematize the failures? Where can we relax conditions so we do not have to throw
away all structure?

One Level Up
At this level⁵⁰, we have morphisms between objects.

In 
𝘴

𝘳
•𝘢 •𝘣 , we can compose arrows like 𝘧 = 𝘳 ∘ 𝘴

•𝘢
 and 𝘨 = 𝘴 ∘ 𝘳

•𝘣

⁵⁰I will borrow some notation from [46]
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For objects, arrows 𝘳 : 𝘢 → 𝘣 and 𝘴 : 𝘣 → 𝘢 witness “sameness”.
If 𝘴 ∘ 𝘳 = id𝘢 and 𝘳 ∘ 𝘴 = id𝘣 (so 𝘧 = 𝘳 ∘ 𝘴 and 𝘨 = 𝘴 ∘ 𝘳), then 𝘢 ≅ 𝘣.
We can say they both belong to the same isomorphic class: 𝘢, 𝘣 ∈ [𝘢]≅

For morphisms, the notion of injectivity is called faithfulness, surjectivity is called
fullness, so when two sets of arrows are isomorphic, we call them fully faithful. These
properties need to be satisfied locally, with respect to the source and target of the
morphism. Let’s consider cases for a functor 𝔽 ∈ [𝒞, 𝒟].

First, consider⁵¹ 

𝒞 → 𝒟

•𝘢

•𝘣

∗𝘹

?

∗𝘺

, what are the options [𝘹, 𝘺]𝒟 ?

We could have two versions of the functor, each defining different [𝘹, 𝘺]𝒟:

𝟣) ∗𝘹 ∗𝘺 , or 𝟤) ∗𝘹 ∗𝘺

Both 𝟣) and 𝟤) are full but only 𝟣) is fully faithful.
In 𝟤), two morphisms in 𝒞 map to same morphism in 𝒟.

Now, consider 

𝒞 → 𝒟

•𝘢

•𝘣

•𝘥

•𝘦

∗𝘹

?

∗𝘺

, what are the options [𝘹, 𝘺]𝒟 ?

We could have 𝗂) ∗𝘹 ∗𝘺 , or 𝗂𝗂) ∗𝘹 ∗𝘺

Neither 𝗂) nor 𝗂𝗂) is full. Remember that surjectivity needs to be satisfied locally for
fullness. Explicitly:
In 𝗂), Size([𝘢, 𝘣]) = 1 ≠ Size([𝘹 = 𝔽𝘢, 𝘺 = 𝔽𝘣]) = 2
In 𝗂𝗂), Size([𝘢, 𝘦]) = 0 ≠ Size([𝘹 = 𝔽𝘢, 𝘺 = 𝔽𝘦]) = 1

⁵¹I borrowed these examples from fabulous [23]
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What else can we say about [𝒞, 𝒟] functors? Functors will preserve isomorphisms⁵². We
will say 𝔽𝑖, 𝔽𝑗 : 𝒞 → 𝒟 are objectwise isomorphic if for every object 𝘹 ∈ 𝒞 there exists
an isomorphism 𝜑{𝘹} : 𝔽𝑖(𝘹) ≅ 𝔽𝑗(𝘹) in 𝒟. (We are not requiring any coherence yet.) We
only need this object-level agreement for the examples below; later we will point out
when these 𝜑{𝘹} line up across arrows—i.e., a natural isomorphism.

𝒞 →
𝔽𝑖 𝒟

•𝘢

•𝘣

∗𝘹

∗𝘺

 and 

𝒞 →
𝔽𝑗

𝒟

•𝘢

•𝘣

∗𝘹

∗𝘺

 are “the same” as 
𝒞 →

𝔽≅ 𝒟

•[𝘢]≅ ∗[𝘹]≅

When the same choices 𝜑{𝘹} can be made compatibly with every arrow 𝑓 in 𝒞, they
assemble into a natural isomorphism 𝜂 : 𝔽𝑖 ⇒ 𝔽𝑗 :

But if 𝔽𝑖 ≅ 𝔽𝑗 , then in some category: 

𝜂

𝜂−1

𝔽𝑖 𝔽𝑗

Mmmm.
In order to compare two 𝔽 functors, it seems that we don’t need all the details of the
objects 𝘢, 𝘣, 𝘹…. Instead, we could focus on the relationships it has in its ambient category.

Rethinking what category to choose

I am now re-considering if I made the right choice in the beginning.
Right now, our objects need strict equalities, like 𝘧 = id𝘢, for 𝘢 ≅ 𝘣 to exist. What if we
redefined our objects to be something more flexible? What if our base level (0#morphisms
[78]) consisted of our 𝒞, 𝒟 themselves instead?

Now, consider a category like 

𝔽

𝔾

𝛼𝒞 𝒟  and forget the details of what is inside 𝒞, 𝒟

Analogous of what we saw before before,
if we wanted to have an isomorphism 𝒞 ≅ 𝒟, we would require
ℍ = id𝒞 in diagram ℍ = 𝔾 ∘ 𝔽

𝒞

We have an equality again, but this time, we can relax it.
Let’s define natural transformations to account for the failure of 𝔾 ∘ 𝔽 and 𝔽 ∘ 𝔾 to be
equal to identities:

𝜂 : id𝒞 ⇒ 𝔾 ∘ 𝔽 𝜀 : 𝔽 ∘ 𝔾 ⇒ id𝒟

(𝜀𝔽) ∘ (𝔽𝜂) = id𝔽 (𝔾𝜀) ∘ (𝜂𝔾) = id𝔾

⁵²If 𝔽 is full & faithful, it also reflects them
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Now, if that condition satisfies, we say 𝒞 and 𝒟
are equivalent 𝒞 ≃ 𝒟
This is nice!
Equivalence ≃ is weaker than isomorphism ≅, which is weaker than equality = .
Category theory allows us to go into higher levels to explore more nuanced ideas of
“sameness”.

And this can go on infinitely [78]!
However, category theory does not know your specific situation.
It can’t make a recommendation for the appropriate nuance level for your reality. It just
gives you the tools.
We ultimately have to choose.
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